

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Kagome Core Development

The information affects Core-Contributors who like to develop on Kagome itself.

Ensure that you go through the following documentation before contributing:

	Terminology

	Rules

	Development guide

	outcome::result<T> docs

	Tooling

CodeStyle

We follow CppCoreGuidelines [https://github.com/isocpp/CppCoreGuidelines].

Please use provided .clang-format file to autoformat the code.

Development guide

We, at Kagome, enforce clean architecture [https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html] as much as possible.

[image: _images/3ca6fc1c3c3783b442346cb369a408a7af8ab1bd.png]image

an entity layer

	Entity represents domain object. Example: PeerId, Address, Customer, Socket.

	MUST store state (data members). Has interface methods to work with this state.

	MAY be represented as plain struct or complex class (developer is free to choose either).

	MUST NOT depend on interfaces or implementations.

an interface layer

	An Interface layer contains C++ classes, which have only pure virtual functions and destructor.

	Classes from the interface layer MAY depend on the entity layer, not vice versa.

	MUST have public virtual or protected non-virtual destructor (cppcoreguidelines [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-dtor-virtual]).

an implementation layer

	Classes in this layer MUST implement one or multiple interfaces from an interface layer.

	Example: interface of the map with put, get, contains methods. One class-implementation may use leveldb as backend, another class-implementation may use lmdb as backend. Then, it is easy to select required implementation at runtime without recompilation. In tests, it is easy to mock the interface.

	MAY store state (data members)

	MUST have base class-interface with public virtual default destructor

Example:

If it happens that you want to add some functionality to Entity, but functionality depends on some Interface, then create new Interface, which will work with this Entity:

Example:

// an Entity
class Block {
public:
 // getters and setters

 // 1. and you want to add hash()
 Buffer hash(); // 2. NEVER DO THIS
private:
 int fieldA;
 string fieldB;
};

// 3. instead, create an interface for "Hasher":
// "Interface" leyer
class Hasher {
public:
 virtual ~Hasher() = default;
 virtual Hash256 sha2_256(const Block&b) const = 0;
};

// 4. with implementation. Actual implementation may use openssl, for instance.
// "Implementation" layer
class HasherImpl: public Hasher {
public:
 Hash256 sha2_256(const Block&b) const {
 ... an actual implementation of hash() ...
 }
};

Rationale – services can be easily mocked in tests. With the Hasher example, we can create block with predefined hash.

This policy ensures testability and maintainability for projects of any size, from 1KLOC to 10MLOC.

Guide for outcome::result<T>

Use outcome::result<T> from <outcome/outcome.hpp> to represent either value of type T or std::error_code.

DO NOT DEFINE CUSTOM ERROR TYPES. There is one good explanation for that – one can not merge two custom types automatically, however error codes can be merged.

Please, read https://ned14.github.io/outcome/ carefully.

Creating outcome::result<T>

Example 1 - Enum in namespace:

/////////////
// mylib.hpp:

#include <outcome/outcome.hpp>

namespace my::super:lib {
 enum class MyError {
 Case1 = 1, // NOTE: MUST NOT start with 0 (it represents success)
 Case2 = 2,
 Case3 = 4, // any codes may be used
 Case4 // or no codes at all
 };

 outcome::result<int> calc(int a, int b);
}
// declare required functions in hpp
// outside of any namespace
OUTCOME_HPP_DECLARE_ERROR(my::super::lib, MyError);

/////////////
// mylib.cpp:
#include "mylib.hpp"

// outside of any namespace
OUTCOME_CPP_DEFINE_CATEGORY(my::super::lib, MyError, e){
 using my::super::lib::MyError; // not necessary, just for convenience
 switch(e) {
 case MyError::Case1: return "Case1 message";
 case MyError::Case2: return "Case2 message";
 case MyError::Case3: return "Case3 message";
 case MyError::Case4: return "Case4 message";
 default: return "unknown"; // NOTE: do not forget to handle everything else
 }
}

namespace my::super::lib {
 outcome::result<int> calc(int a, int b){
 // then simply return enum in case of error:
 if(a < 0) return MyError::Case1;
 if(a > 100) return MyError::Case2;
 if(b < 0) return MyError::Case3;
 if(b < 100) return MyError::Case4;

 return a + b; // simply return value in case of value:
 }
}

Example 2 - Enum as class member:

/////////////
// mylib.hpp:

#include <outcome/outcome.hpp>

namespace my::super:lib {

 class MyLib {
 public:
 // MyError now is a member of class
+ enum class MyError {
+ Case1 = 1, // NOTE: MUST NOT start with 0 (it represents success)
+ Case2 = 2,
+ Case3 = 4, // any codes may be used
+ Case4 // or no codes at all
+ };

 outcome::result<int> calc(int a, int b);
 }
}
// declare required functions in hpp
// outside of any namespace
+// NOTE: 1 args is only namespace, class prefix should be added to enum
-OUTCOME_HPP_DECLARE_ERROR(my::super::lib, MyError);
+OUTCOME_HPP_DECLARE_ERROR(my::super::lib, MyLib::MyError);

/////////////
// mylib.cpp:
#include "mylib.hpp"

-OUTCOME_CPP_DEFINE_CATEGORY(my::super::lib, MyError, e){
+OUTCOME_CPP_DEFINE_CATEGORY(my::super::lib, MyLib::MyError, e){
- using my::super::lib::MyError; // not necessary, just for convenience
+ using my::super::lib::MyLib::MyError; // not necessary, just for convenience
 switch(e) {
 case MyError::Case1: return "Case1 message";
 case MyError::Case2: return "Case2 message";
 case MyError::Case3: return "Case3 message";
 case MyError::Case4: return "Case4 message";
 default: return "unknown"; // NOTE: do not forget to handle everything else
 }
}

namespace my::super::lib {
- outcome::result<int> calc(int a, int b)
+ outcome::result<int> MyLib::calc(int a, int b){
 // then simply return enum in case of error:
 if(a < 0) return MyError::Case1;
 if(a > 100) return MyError::Case2;
 if(b < 0) return MyError::Case3;
 if(b > 100) return MyError::Case4;

 return a + b; // simply return value in case of value
 }
}

Inspecting outcome::result<T>

Inspecting is very straightforward:

outcome::result<int> calc(int a, int b){
 // then simply return enum in case of error:
 if(a < 0) return MyError::Case1;
 if(a > 100) return MyError::Case2;
 if(b < 0) return MyError::Case3;
 if(b < 100) return MyError::Case4;

 return a + b; // simply return value in case of value:
}

outcome::result<int> parent(int a) {
 // NOTE: returns error if calc returned it, otherwise get unwrapped calc result
 OUTCOME_TRY(val, calc(a, 1); // use convenient macro
 // here val=a+1

 // or

 auto&& result = calc(a, 2);
 if(result) {
 // has value
 auto&& v = result.value();
 return v;
 } else {
 // has error
 auto&& e = result.error(); // get std::error_code
 return e;
 }

 // or

 // pass result to parent
 return calc(a, 3);
}

Rules

We define categories of rules:

	Design rules - recommendations that flatly proscribe or require a given practice without exception.

	Guidelines - suggested practices of a more abstract nature for which exceptions are sometimes legitimately made.

	Principles - certain observations and truths that have often proved useful during the design process but must be evaluated in the context of a specific design.

All of these rules are described in the [^1], readers are welcomed not to ask rationale here, but search through the book by themselves for answers.

All used terms are described in terms.md.

	major design rule - It is almost always an error to place a definition with external linkage in a .h file.

// radio.h
#ifndef INCLUDED_RADIO
#define INCLUDED_RADIO
int z; // illegal: external data definition
extern int LENGTH = 10; // illegal: external data definition
const int WIDTH = 5; // avoid: constant data definition
stati c int y; // avoid: static data definition
static void func() {...} // avoid: static function definition
class Radio {
 static int s_count; // fine: static member declaration
 static const double S__PI; // fine: static const member dec.
 int d_size; // fine: member data definition
public:
 int size() const; // fine: member function declaration
}; // fine: class definition

inline int Radio::size() const {
 return d_size;
} // fine: inline function definition

int Radio::s_count; // illegal: static member definition

double Radio::-S_PI = 3.14159265358; // illegal: static const member def,
int Radio::size() const { /*...*/ } // illegal: member function definition
#endif

	major design rule - avoid free functions with external linkage. The definitions to be avoided at file scope in .c files are data and functions that have not been declared static [^1: 1.1.4]

// file1.c
int i; // avoid: external linkage
int max(int a, int b){...} // avoid: external linkage
inline int min(){...} // fine: internal linkage
static int mean(){...} // fine: internal linkage
class Link; // fine: internal linkage
enum {...} // fine: internal linkage
const double PI = 3; // fine: internal linkage
static const char *names[] = {"a", "b"} // fine: internal linkage
typedef struct {..} mytype;// fine: does not introduce new type.

	major design rule - keep class data members private.

	major design rule - avoid free functions (except operator functions) at file scope in .h.

	major design rule - avoid enums, typedefs and constants at file scope in .h files.

	major design rule - avoid using preprocessor macros in header files except as include guards.

	major design rule - only classes, structures, unions and free operator functions should be declared at file scope in .h file. Only classes, structures , unions, and inline (member or free operator) functions should be defined at file scope in a .h file.

	major design rule - place a unique and predictable (internal) include guard around the contents of each header file.

	guideline - document the public API so that they are usable by others. Have at least one other developer review each interface.

	guideline - explicitly state conditions under which behavior is undefined.

	principle - the use of assert statements can help to document the assumptions you make when implementing your code.

	principle - a component is the appropriate fundamental unit of design.

	major design rule - logical entities declared within a component should not be defined outside that component.

	minor design rule - the root names of the .cpp and the .hpp file that comprise a component should match exactly.

	major design rule - the .cpp file of every component should include its own .hpp file as the first substantive line of code.

	guideline - clients should include header files providing required type definitions directly; except for non-private inheritance, avoid relying on one header file to include another.

	major design rule - avoid definitions with external linkage in the .cpp file of a component that are not declared explicitly in the corresponding .hpp file.

	major design rule - avoid accessing a definition with external linkage in another component via a local declaration; instead, include the .hpp file for that component.

	guideline - a component X should include y.hpp only if X makes direct substantive use of a class or free operator function defined in Y.

	principle - granting (local) friendship to classes defined within the same component does not violate encapsulation.

Example: defining an iterator class along with a container class in the same component enables user extensibility, improves maintainability and enhances reusability while preserving encapsulation.

	principle - all tests must be done in isolation. Testing a component in isolation is an effective way to ensure reliability.

	principle - every directed acyclic graph can be assigned unique level numbers; a graph with cycles cannot. A physical dependency graph that can be assigned unique level numbers is said to be levelizable.

	principle - in most real-world situations, large designs must be levelizable if they are able to be tested effectively.

	principle - testing only the functionality directly implemented within a component enables the complexity of the test to be proportional to the complexity of the component.

	guideline - avoid cyclic physical dependencies among dependencies.

	principle - factoring a concrete class into two classes containing higher and lower levels of functionality can facilitate levelization.

	principle - factoring an abstract base class into two classes - one defining a pure interface, the other defining its partial implementation - can facilitate levelization.

	principle - a protocol class can be used to eliminate both compile and link time dependencies.

	major design rule - prepend every global identifier with its package prefix.

	major design rule - avoid cyclic dependencies among packages.

	guideline - avoid declaring results returned by value from functions as const.

	minor design rule - never pass a user-defined type to a function by value.

	guideline - avoid using short in the interface; use int instead.

	guideline - avoid using unsigned in the interface; use int instead.

	guideline - explicitly declare (public or private) the constructor and assignment operator for any class defined in a header file.

	minor design rule - in every class that declares or is derived from a class that declares a virtual function, explicitly declare the destructor as the first virtual function in the class and define it out of line.

[^1]: “John Lakos - Large Scale C++ Software Design”.

Terms

	definition - provides a unique description of an entity (type, instance, function) within a program:

	it declares a function without specifying its body

	it contains an extern specifier and no initializer or function body

	it is the declaration of a static class data member within a class definition

	it is a class name declaration

	it is a typedef or using declaration

	declaration - introduces a name into a program:

	it defines a static class data member

	it defines a non-inline member function

	free function - non-member function, which is not friend.

	translation unit - single C++ source file after preprocessor finished including all of the header files.

	internal linkage - name has internal linkage if it is local to its translation unit and cannot collide with an identical name defined in another translation unit at link time.

	external linkage - name has external linkage if in multi-file program, that name can interact with other translation units at link time.

	target - shared or static library, executable or command, added to CMake with add_library, add_executable, add_custom_target. With make executed as make <target>.

	public API - is an interface which is programmatically accessible or detectable by a client.

	component - is the smallest unit of physical design. Or, a set of translation units, compiled in a single target as a single library or executable.

	unit test - a set of translation units intended to test public API of a specific component (exactly one!).

	regression test - refers to the practice of comparing the results of running a program given a specific input with a fixed set of expected results, in order to verify that the program continues to behave as expected from one version to the next. In other words, tests which persist actoss versions.

	integration test - refers to the practice when group of components (or packages) is grouped and tested together as a single unit. Example: session manager with postgres database.

	white-box testing - refers to the practice of verifying the expected behavior of a component by exploiting knowledge of its underlying implementation.

	black-box testing - refers to the practice of verifying the expected behavior of a component based solely on its specification (without knowledge of its implementation).

	protocol class - an abstract class is a protocol class if:

	it neither contains nor inherits from classes that contain member data, non-virtual functions, or private (protected) members of any kind.

	it has a non-inline virtual destructor defined with an empty implementation (default implementation).

	all member functions other than the destructor including inherited functions, are declared pure virtual and left undefined.

	packages - is a collection of components organized as a physically cohesive unit.

	package group - is a collection of packages organized as a physically cohesive unit.

	library - is a collection of package groups organized as a physically cohesive unit.

Levelization

[image: _images/7e70876d88e621a8c27dd278d003052e55657612.png]

Given notation as above, we can build a physical (files) and logical (entities) dependency graph.

In perfectly testable system in such graphs there are no cycles (in C++ terms - no circular dependencies) and system consists of clearly defined components, which may be combined in packages.

This graph then is topologically sorted – this helps to visualize and levelize components.

[image: _images/2b8aeef7f169b7a3875263e473c92736c5eb88db.png]

Tooling

In Kagome we use certain set of tools to assure code quality. Here is a list, and guide how to use them.

clang-tidy

Set of rules is specified at root .clang-tidy file.

Configure + Build + Run clang-tidy (slow)

	Ensure clang-tidy is in PATH

	mkdir build

	cd build

	cmake .. -DCLANG_TIDY=ON

	make

Warnings/errors will be reported to stderr, same as compiler warnings/errors.

Run clang-tidy for changes between your branch and master

	Ensure clang-tidy is in PATH

	Ensure run-clang-tidy.py is in PATH.

	on Mac it is usually located at /usr/local/Cellar/llvm/8.0.0_1/share/clang/run-clang-tidy.py (note, 8.0.0_1 is your version, it may be different).

	on Linux it is usually located at /usr/lib/llvm-8/share/clang/run-clang-tidy.py

	mkdir build

	cd build

	cmake ..

	make generated - this step creates generated headers (protobuf, etc)

	cd ..

	housekeeping/clang-tidy.sh build

Toolchain build

When CMAKE_TOOLCHAIN_FILE is specified, then specific toolchain is used.
Toolchain is a cmake file, which sets specific variables, such as compiler, its flags, build mode, language standard.

Example:

mkdir build
cd build
cmake .. -DCMAKE_TOOLCHAIN_FILE=../cmake/toolchain/gcc-8_cxx17.cmake

All dependencies will be built with gcc-8 and cxx17 standard.

Default toolchain is cxx17.cmake. List of toolchains.

Also, sanitizers can be enabled with use of toolchains, so all dependencies will be built with specified sanitizer.

List of sanitizers available.

coverage

Coverage is calculated automatically by Jenkins (CI).

We use codecov [https://codecov.io/gh/soramitsu/kagome] to display coverage.

 _static/comment-bright.png

_images/7e70876d88e621a8c27dd278d003052e55657612.png
DEFINITION:
NOTATION MEANING

X is a logical entity (e.g., class).

x is a physical entity (e.g., file).

— = »A Bisakindof A.

o Uses-In-The-Interface 4 p yceq 4 in B’ interface.

e Uses-In-The-Implementation , 5 o0 4 i pos implementation.

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/2b8aeef7f169b7a3875263e473c92736c5eb88db.png
(external or C++
standard library

components)

2 1

5 (Crorary)

str

O Link?Word>

alias ‘ wordlist

Figure 4-11: Component Dependency Diagram

_images/3ca6fc1c3c3783b442346cb369a408a7af8ab1bd.png
Entity

I

Interface

I

Implementation

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

_static/plus.png

